If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8t^2+60t+10=0
a = -8; b = 60; c = +10;
Δ = b2-4ac
Δ = 602-4·(-8)·10
Δ = 3920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3920}=\sqrt{784*5}=\sqrt{784}*\sqrt{5}=28\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-28\sqrt{5}}{2*-8}=\frac{-60-28\sqrt{5}}{-16} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+28\sqrt{5}}{2*-8}=\frac{-60+28\sqrt{5}}{-16} $
| 12.3x-3.5=5.78 | | 8c^2+7c-1=0 | | 2(1/2x-1)=x-2 | | 3(k−4)−2(k−5)=6k−2(k−5) | | -2+9=13y-7-12y | | 72=-3x^2+30x | | 6x2-x+1=0 | | 4−(3f−5)=6−(2f+7) | | 3(-x-5)-x=17 | | 99x+9x^2=108 | | n-4=40 | | -3x=9-2x^2 | | 3(2n-5)=6+2(n-3) | | 4(2m-3)=3m-27 | | X-7;x=3 | | 2(2y-3)=y-18 | | 40x=-4x^2-100 | | -28x+40=-4x^2 | | |-2.2-x|=3 | | 5x+3=8x-5x | | (x-1)+121=90 | | 13-3t=4(t-2) | | -K^2+-5k+16=0 | | -K2+-5k+16=0 | | 4/7x+1/3=3/7-3/7x+3/7 | | 4n+32=8 | | 2*12^(10x+2)=2 | | 2y^2-26y+80=0 | | 7Y=-21x+35 | | 2080*x+300*1.5*x=90000 | | 44x^2-19x=0 | | 2(y^2-13y+40)=0 |